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Behavioral coping strategies are critical for active resilience to stress
and depression; here we describe a role for neuroligin-2 (NLGN-2) in
the nucleus accumbens (NAc). Neuroligins (NLGN) are a family of
neuronal postsynaptic cell adhesion proteins that are constituents
of the excitatory and inhibitory synapse. Importantly, NLGN-3 and
NLGN-4 mutations are strongly implicated as candidates underlying
the development of neuropsychiatric disorders with social distur-
bances such as autism, but the role of NLGN-2 in neuropsychiatric
disease states is unclear. Here we show a reduction in NLGN-2 gene
expression in the NAc of patients with major depressive disorder.
Chronic social defeat stress in mice also decreases NLGN-2 selectively
in dopamine D1-positive cells, but not dopamine D2-positive cells,
within the NAc of stress-susceptible mice. Functional NLGN-2 knock-
down produces bidirectional, cell-type-specific effects: knockdown
in dopamine D1-positive cells promotes subordination and stress
susceptibility, whereas knockdown in dopamine D2-positive cells
mediates active defensive behavior. These findings establish a be-
havioral role for NAc NLGN-2 in stress and depression; provide a
basis for targeted, cell-type specific therapy; and highlight the role
of active behavioral coping mechanisms in stress susceptibility.

neuroligin-2 | depression | social defeat stress | dominance | medium spiny
neuron

Behavioral coping strategies used during stressful events play
an important role in determining the subsequent develop-

ment of neuropsychiatric disease (1, 2). This same phenomenon is
observed in rodent stress models, where susceptibility or resilience
to social stress is strongly influenced by the subordinate’s selection
of either submissive or dominant coping styles (3–5). However, the
underlying synaptic mechanisms promoting the selection of such
coping behaviors are unclear (6) and present a therapeutic ap-
proach to the treatment of stress-related disorders.
Neuroligin-2 (NLGN-2) is a structural constituent of the in-

hibitory synapse (7, 8), and although it is also associated with
maladaptive social behavior (9–13), its direct role in neuropsy-
chiatric disease is unclear (14, 15). NLGN-2 is a key postsynaptic
cell adhesion protein that supports the functional integrity of the
inhibitory synapse (7, 14, 16). Studies of developmental NLGN-
2 knockout mice have established a distinct role for NLGN-2 in
maintaining inhibitory synapse function and modulating anxiety
behaviors (8, 17–19). Outside of this developmental window,
very little is known about the role of NLGN-2 in regulating adult
social behavior. Recent NLGN-2 manipulations in the adult mouse
prefrontal cortex and hippocampus describe varying effects on
anxiety, aggression, and fear memory (9, 20–22).
The NAc, an integral hub in the mesolimbic dopamine circuit,

is well established as a critical brain region regulating social
stress behaviors (23). Synaptic plasticity within the dopaminergic
mesolimbic circuit is implicated in both major depressive disor-
der (MDD) and increased susceptibility to stress (24–30). The

NAc contains primarily GABAergic medium spiny neurons
(MSNs) divided into two subpopulations that often have distinct
functional effects on stress- and reward-mediated behaviors: do-
pamine receptor 1-positive medium spiny neurons (D1-MSNs),
expressing primarily dopamine D1 receptors, and D2-MSNs,
expressing primarily dopamine D2 receptors (27, 28, 31, 32).
Two recent studies have examined NLGN-2 expression in striatal
MSNs (33, 34), confirming its role as a constituent of the MSN
inhibitory synapse and quantifying NLGN-2 expression within
MSN populations. Here, we provide evidence that NLGN-2 is
reduced in the NAc of patients with MDD and describe a cell-
type-specific role for NLGN-2 in NAc MSNs in modulating active
behavioral coping mechanisms in stress susceptibility and resil-
ience in a mouse model of depression.

Results
NLGN-2 Decreases in NAc of Depressed Patients. Transcriptional
profiling of postmortem human NAc was conducted to identify
changes in neuroligin gene expression in MDD, revealing a se-
lective down-regulation of NLGN-2 in subjects with MDD that is
not significantly reversed by antidepressant medication being
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present at the time of death (Fig. 1 and SI Appendix, Table S1 for
demographics). The change in NAc NLGN-2 does not generalize
to other neuropsychiatric disorders such as chronic cocaine abuse
(SI Appendix, Fig. S1). This is evidence for neuroligin gene regu-
lation in the NAc in MDD and presents a unique role for NLGN-
2 in neuropsychiatric disease and antidepressant strategies.

NLGN-2 Decreases in NAc of Stress-Susceptible Mice. Reverse trans-
lation of these findings to chronic social defeat stress, a mouse
model of depression-like behavior, recapitulates a decrease in

NAc NLGN-2 only in mice that are susceptible to stress (Fig. 2).
After stress, mice are classified as susceptible or resilient based on
social interaction (35–37) (SI Appendix, Fig. S2). We report a
decrease in NAc NLGN-2 protein that significantly correlates with
lower social interaction ratio, or increased susceptibility to stress
(Fig. 2 B–D). To characterize the cell-type specificity of social-
defeat-induced changes, NLGN-2 mRNA was assayed in the
principal NAc neuronal populations, D1-MSNs and D2-MSNs,
using RiboTag methodology (32). NLGN-2 mRNA levels de-
creased specifically in D1-MSNs of stress-susceptible mice, and
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Fig. 1. NLGN-2 in the human postmortem nucleus accumbens changes in MDD. (A) Schematic indicating blue region of dissection of postmortem human NAc.
Transcriptional profiling of postmortem human NAc (B) NLGN-1, (C) NLGN-2, and (D) NLGN-3 gene expression revealed a selective decrease in NLGN-2 in depressed
subjects (one-way ANOVA: F2,42 = 3.876; *P < 0.05). All data are represented as mean ± SEM. See SI Appendix, Table S1 for detailed demographic data.
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Fig. 2. NLGN-2 in the mouse nucleus accumbens changes in chronic stress. (A) The chronic social defeat stress paradigm models depression-like symptoms in
mice and results in resilient or susceptible subpopulations. (B) Representative images of NLGN-2 immunohistochemistry in the NAc after social defeat stress in
control (B1), susceptible (B2), and resilient (B3) mice. (Scale bar, 20 μm.) (C) NLGN-2 puncta are reduced in susceptible mice (one-way ANOVA: F2,19 = 4.922;
*P < 0.05; n = 7, 6, 9), and (D) lower NLGN-2 puncta correlates with decreased social interaction ratio (r2 = 0.4497; ***P = 0.0006). (E) Transcriptional profiling
of NLGN-2 in D1-MSNs vs. D2-MSNs after social defeat stress showed a reduction in NLGN-2 mRNA selectively in D1-MSNs of stress-susceptible mice (one-way
ANOVA: F2,17 = 3.758; *P < 0.05; n = 7, 7, 4) and (F) the NLGN2 levels in D1-MSNs correlated with reduced interaction time with a novel animal (r2 = 0.238; *P =
0.040). (G) NLGN-2 transcription did not significantly change in D2-MSNs after stress (one-way ANOVA, P > 0.05; n = 6, 8, 4) and (H) did not correlate with
changes in social interaction time (r2 = 0.00002; P = 0.98). All data are represented as mean ± SEM.
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levels correlated with reduced social interaction (Fig. 2 E and F).
In D2-MSNs, there were no significant stress-induced changes in
NLGN-2 transcription (Fig. 2 G and H).

Cell-Type-Specific NLGN-2 Knockdown Affects Stress-Related Behaviors.
To further explore the behavioral role of NLGN-2 in the NAc, a
synthetic microRNA (miRNA) against NLGN-2 was designed,
expressed, and validated in a Cre-conditional adeno-associated virus
(AAV) vector both in vitro and in vivo (SI Appendix, Fig. S3).
Whole-cell recordings of mini inhibitory postsynaptic currents from
virus-infected cells demonstrated a significant and bidirectional
effect of NLGN-2 knockdown on mini inhibitory postsynaptic
currents recorded from D1- and D2-positive cells (SI Appendix, Fig.
S4). Stereotactic injection of the miRNA virus or a control virus
expressing a nontargeting sequence was performed in the NAc of
D1-Cre and D2-Cre transgenic mice, enabling knockdown in NAc
MSN subpopulations. This approach allows for temporal and spatially
targeted cell-type-specific knockdown in the adult animal. Animals
subsequently underwent a subthreshold social defeat stress, which
is used to reveal prosusceptibility factors (24–26, 35, 36, 38), fol-
lowed by a social interaction test (SI Appendix, Fig. S5 for experi-
mental design). Mice were compared with Cre littermates in all
behavioral studies.
After subthreshold social defeat, D1-Cre mice expressing the

NLGN-2 miRNA virus (D1-miRNA) display stress-susceptible
behavior, quantified as a lower social interaction ratio and less time
spent in the interaction zone with a novel animal present compared
with animals expressing the nontargeting miRNA control virus (D1-
control; Fig. 3 A–D and SI Appendix, Fig. S5). Conversely, D2-Cre
mice expressing the miRNA virus in the NAc (D2-miRNA) exhibit
social interaction behaviors similar to D2-Cre mice expressing the
nontargeting miRNA control virus (D2-control; Fig. 3 E–H and SI

Appendix, Fig. S5). These data are replicated in two independent
cohorts shown side by side (Fig. 3). Animals that received AAV-
miRNA in D1 and D2 neurons, but did not undergo social defeat
stress, showed no deficits in social interaction behavior (SI Ap-
pendix, Fig. S6). Last, D2 miRNA mice also display reduced anxiety
after social defeat stress, as measured by the open field test, a
standard test of exploratory-based anxiety behavior (SI Appendix,
Fig. S7). Thus, NLGN-2 plays a distinct, cell-type-specific role in
NAc D1-MSNs to modulate stress susceptibility.

NAc NLGN-2 Knockdown Modulates Active Coping Behavior. In-
terestingly, NLGN-2 knockdown in D1 versus D2-MSNs pro-
motes differential social behaviors during social defeat sessions
with CD-1 aggressor mice. D2-miRNA mice display significantly
more active defensive behaviors against CD-1 aggressors, whereas
D1-miRNA mice exhibit minimal active defensive behaviors (Fig. 4
A–C) and are more vulnerable to stress. These behaviors include
biting, boxing, and holding down the CD-1 aggressor mouse, which
in other studies has been interpreted as active coping and associ-
ated with better behavioral outcomes (39, 40) (Fig. 2C). Detailed
analysis of CD-1 aggressors and test mice during social defeat stress
elucidates no significant differences in CD-1 attack behavior or
baseline social behavior between CD-1 and Cremice across groups,
although D1-miRNA animals also show increased baseline social
approach behavior toward CD-1 mice (SI Appendix, Tables S2 and
S3). These data indicate there are no overall baseline social be-
havior deficits between CD-1 mice and D1-Cre or D2-Cre mice
after NLGN-2 knockdown (SI Appendix, Table S4); however, D1-
miRNA mice fail to employ an active behavioral coping strategy.

NAc NLGN-2 Knockdown Affects Dominance and Aggression Behaviors.
To further investigate the role of D1-MSN and D2-MSN NLGN-
2 in dominant versus subordinate behaviors related to stress,
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experimental mice were examined in the tube test, an established
model for probing dominance hierarchies among inbred mice (41,
42). Mice are placed at opposite ends of a narrow tube that permits
only unidirectional movement. The dominant mouse is defined as
the mouse that succeeds in forcing its opponent to retreat from the
end of the tube. D1-miRNA mice display decreased dominance
behavior, winning ∼30% of tube test trials, whereas D2-miRNA
mice display significantly greater dominance behavior in the tube
test, winning ∼80% of tube test trials (Fig. 4 D and E). In a test of
home cage aggression, experimental D1- or D2-Cre mice injected
with NLGN-2 miRNA or control virus were singly housed and
exposed to a novel, younger conspecific intruder for 10 min. D2-
miRNA mice show decreased latency to attack an intruder mouse
compared with D2-control animals, and no significant effects on
home cage aggression behavior are seen in D1-miRNA mice (Fig.
4 F and G).
Overall, NLGN-2 knockdown in NAc D1-MSNs supports a

behavioral profile marked by decreased dominance and reduced
defensive coping behaviors against aggressor mice, together in-
creasing susceptibility to stress. In contrast, NLGN-2 knockdown
in NAc D2-MSNs promotes dominance, active defensive ag-
gression, and reduced anxiety-like behavior, which may help to
prevent stress susceptibility.

Discussion
Although it is well established in the clinical literature that active
coping styles play a critical role in patient outcome (43, 44), there
have been few reports examining the molecular mechanisms sup-
porting this observation. Our data describe a mechanism whereby
chronic stress or depression regulates the transcriptional profile of
NLGN-2 in the NAc of humans and rodents, and that the functional
manipulation of NLGN-2 promotes an active behavioral coping
mechanism. The NLGN family has been heavily implicated in the
etiology of social neuropsychiatric disorders such as autism and
schizophrenia (14, 15), and more recently, a case report identified
a nonsense mutation of NLGN-2 as possibly underlying anxiety

behavior (11). A greater understanding of the role of NGLN-2
within brain reward circuitry in mediating stress-induced behaviors
will aid in interpreting its significance for neuropsychiatric disease
states.
We provide neuropathological evidence for reduced levels of

NLGN-2 in human NAc from depressed subjects. In mice, re-
duced NLGN-2 in D1-MSNs underlies and promotes a stress-
susceptible phenotype characterized by decreased dominance
behavior. Conversely, mice with reduced NLGN-2 in D2-MSNs
do not develop significant social avoidance, a finding that may be
in part a result of their display of active defensive behaviors and
greater dominance. Whole-cell recordings of mini inhibitory post-
synaptic current from D1- and D2-positive virus-infected cells
showed that knockdown of NLGN-2 produces increased mini in-
hibitory postsynaptic current frequency on D1-positive cells and
decreased mini inhibitory postsynaptic current frequency on D2-
positive cells. Prior studies of cultured hippocampal cells with
total knockout of NLGN-2 demonstrated that NLGN-2 knockout
promotes overall decreased inhibitory synaptic responses (8). Only
one prior study has examined the role of neuroligins in the NAc
(33), and all prior studies used total knockout models, not a
knockdown of the gene as produced by our viral manipulation.
The bidirectional modulation of inhibitory tone demonstrated by
viral knockdown, producing increased inhibition of D1-positive
cells, is consistent with previous behavioral studies demonstrating
that pharmacogenetic inhibition of NAc D1-positive cells promotes
increased social avoidance behavior after social defeat stress (27).
We propose that achieving a cell-type-specific balance in NAc
NLGN-2 may be necessary to drive adaptive behavioral responses
to stress. More work is needed to understand the cell-type-specific
functional balance in NAc circuitry mediating stress-susceptible or
stress-resilient behaviors.
One limitation of cell-type-specific studies is the restriction to

male bacterial artificial chromosome (BAC) transgenic inbred
mice, which are known to display variable home cage aggression
behaviors compared with validated outbred mouse strains such
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as the CD-1 retired male breeder (45–47). Inbred strain-specific
differences in aggressive behavior have been the focus of re-
search for many years and have been used to identify genetic
contributions to aggressive behavior (48–50). Our laboratory
and others have noted baseline behavioral differences in BAC
transgenic mice that may be a result of off-target effects of the
BAC or founder effects from which the lines were derived (51).
Interpretation of the data in Figs. 3 and 4 across groups is spe-
cifically limited by the baseline differences in behavior between
D1-Cre and D2-Cre cohorts. Because viral-mediated strategies to
target D1- or D2-positive cells with AAV-mediated gene knock-
down have been largely unsuccessful, we are limited to the avail-
able transgenic lines for cell-type-specific studies. Future research
will be aimed at extending these studies to other mouse models
to better characterize the behavioral phenotypes produced by
NAc NLGN-2 manipulation.
Interestingly, although not statistically significant, antidepres-

sant treatment increased NLGN-2 transcription in the postmortem
human NAc of some depressed subjects. This trend possibly reflects
individual variability in behavioral responses to antidepressant
treatment, with a subpopulation of responders showing up-regulation
of NLGN-2 levels. Approximately one-third of depressed patients
are resistant to the current standard antidepressant therapies (52).
Thus, modulation of NLGN-2 may be an additional substrate
reflecting improved antidepressant efficacy. Future studies should
also be aimed at collecting data on additional behavioral endpoints,
including aggressive behaviors, in depressed human subjects to
better analyze the intersection of postmortem molecular changes
with stress coping behaviors.
In summary, we provide evidence that chronic stress in both

humans and rodents induces a robust down-regulation of NLGN-2
expression in the NAc. Functional studies in mice uncover a cell-
type specific role of NAc NLGN-2 that informs differential be-
havioral coping strategies to stress. An improved cell-type-specific
understanding of depression pathophysiology may aid in the future
development of targeted treatments to promote active resilience
mechanisms for therapeutic relief.

Materials and Methods
See SI Appendix, SI Materials and Methods, for additional detailed in-
formation about procedures used in these studies.

Experimental Animals. D1-Cre and D2-Cre BAC transgenic heterozygous male
mice (courtesy of Eric Nestler, Icahn School of Medicine at Mount Sinai) were
bred to c57bl6/j wild-type females from Jackson Laboratories, and the
resulting 7–10-wk-old heterozygous male offspring were used for behavioral
studies. Eight-week-old c57bl6/j male mice from Jackson were used for im-
munohistochemistry and mRNA profiling of NLGN-2 after chronic social
defeat stress. Singly-housed male CD-1 mice (4-mo-old sexually experienced
retired breeders) from Charles River Laboratories were used as aggressors in
social defeat experiments, as previously described (35). All mice were group
housed in a controlled environment (12 h light/dark cycle) with food and
water available ad libitum. Behavioral assessments and tissue collections
were performed during the animals’ light phase. All experiments were
performed in accordance with the Icahn School of Medicine and the Uni-
versity of Maryland Institutional Animal Care and Use Committees.

Social Defeat Stress and Social Interaction Test. Chronic social defeat stress,
subthreshold social defeat stress, and social interaction test was performed as
previously described (24, 25, 29, 35–38).

microRNA Vector. Commercially available mouse short hairpin RNA against
the NLGN-2 gene was purchased (TG516880; Origene). Short hairpin RNA
sequences were then used to create microRNA oligos using the BLOCK-iTTM
Pol II miR RNAi Expression Vector Kit (K4936-00; Invitrogen). miR constructs
were next subcloned into a bicistronic AAV-IRES-GFP vector (VPK-418; Cell
Biolabs, Inc.). To construct a Cre-dependent version, we modified an AAV-
FLEX-rev-ChR2-Tdtomato vector (#18917; Addgene), using the Gibson as-
sembly method (Cat# 2611; New England Biolabs). AAV constructs were
validated in Neuro2A cells (ATCC), using common procedures before being

packaged into high-titer viral particles by the University of North Carolina at
Chapel Hill Gene Therapy Center (UNC Vector Core). For a detailed de-
scription, see SI Appendix.

Defensive Behavior. Experimental mice were exposed for 10 min to a novel,
CD-1 aggressor, as previously described (35). Defensive behaviors by the
experimental mice against the CD-1 aggressor were scored during post hoc
video analysis by a blinded experimenter. Aggressive behavior by CD-1 ag-
gressors and social behaviors by CD-1, D1-Cre, and D2-Cre were scored in an
automated manner using AggressionScan (CleverSys Inc) software.

Tube Test. The tube test protocol was performed as previously described in
reports using a nonautomated test (6, 42, 53).

Home Cage Aggression. Experimental mice were singly housed and exposed
for 10 min to a novel, D1-Cre or D2-Cre conspecific intruder of ∼5 wk age and
15 g weight. Attack latency was manually scored by a blinded experimenter.

Open Field Test. The open field test was performed as previously described (38).
Experimental mice were placed inside a novel box, and movements inside the
box were tracked over the course of 10min, using Ethovision (Noldus) software.

Immunohistochemistry.After behavioral studies, mice underwent transcardial
perfusion, and brains were dissected and postfixed as previously described
(24, 38). Next, 1:500 NLGN-2 (rabbit, ab36602; Abcam) primary antibody was
used in blocking solution (3% normal donkey serum and 0.3% Triton X in
PBS) with free-floating incubation overnight. Images were acquired on a
Zeiss LSM 780 confocal microscope using a 100× oil immersion objective. Images
were deconvoluted with AutoQuant, and protein puncta were quantified using
Image J 3D Object Counter.

RiboTag. The RiboTag procedure to immunoprecipitate ribosomes from NAc
of D1-Cre-RiboTag (D1-Cre-RT) and D2-Cre-RiboTag (D2-Cre-RT) mice was
performed as previously described (32). NAc from three mice was pooled to
generate each sample. Each mouse met control, susceptible, or resilient
criteria, as indicated by social interaction after social defeat stress, as de-
scribed previously (35).

qPCR. qPCR was performed as previously described (24). Analysis was per-
formed using the ΔΔC(t) method, with sample normalization to GAPDH. IDT
PrimeTime primers were purchased from Integrated DNA Technologies.
Please see SI Appendix, Table S4 for a list of primer pairs.

Western Blotting. Neuro2A cells were collected and protein was isolated in
RIPA buffer, using common procedures. Membranes were blocked in 5%milk
and incubated overnight inmilk with goat polyclonal antibody against NLGN-
2 (1:1,000, ab77595; Abcam).

Stereotaxic Surgery. Surgical procedures were performed according to pre-
viously published methods (24, 38, 54) in accordance with guidelines from
the Icahn School of Medicine Institutional Animal Care and Use Committee.
Nucleus accumbens bregma coordinates: anteroposterior, +1.5 mm; medio-
lateral, +1.6 mm; dorsoventral, −4.4 mm, 10° angle.

Acquisition of Postmortem Human Tissue. Nucleus accumbens whole-tissue
resections were collected at the local medical examiners offices, after
obtaining next-of-kin permission, by the Quebec Suicide Brain Bank at the
Douglas Hospital Research Center under an approval of the Douglas Hospital
Research Center’s Research Ethics Committee.

Electrophysiology. Five-week-old D1-Cre and A2A-Cre BAC transgenic mice
were injected with AAV-control or AAV-miRNA viruses, and whole-cell re-
cordings were obtained 10–14 d postinfection from NAc medium spiny
neurons expressing GFP. MSNs were voltage clamped at +0 mV. Miniature
inhibitory postsynaptic currents were recorded in the presence of tetrodo-
toxin (500 nM), D-APV (100 μM), and NBQX (100 μM), using 3–5 MΩ patch
pipettes filled with cesium methanesulfonate-based internal solution. For a
detailed description, see SI Appendix.

Statistical Analysis. All data are expressed as the mean ± SEM. Mean dif-
ferences between groups were determined using two-tailed Student’s t test,
one-way analysis of variance (ANOVA), or two-way ANOVA, followed by
Bonferroni posttests if the main effect was significant at P < 0.05. Statistical
analyses were performed using Prism 5.0 (GraphPad Software).
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